Spring Boot Performance Optimization

May 10, 2025 6 min read

Spring Boot is a powerful framework that helps developers quickly create production-ready applications. However, as applications grow in size and complexity, performance optimization becomes crucial. In this blog post, we'll explore various techniques to optimize Spring Boot applications for better performance.

1. Database Optimization

Batch Processing

When dealing with large datasets, batch processing can significantly improve performance. Use Spring Data JPA's @QueryHints with HINT_FETCH_SIZE to optimize database queries:

@QueryHints({@QueryHint(name = HINT_FETCH_SIZE, value = "50")})
List<User> findAll();

Connection Pooling

Configure HikariCP for optimal connection pooling:

spring.datasource.hikari.maximum-pool-size=10
spring.datasource.hikari.minimum-idle=5
spring.datasource.hikari.idle-timeout=300000
spring.datasource.hikari.connection-timeout=30000

2. Caching Strategies

Spring Cache Abstraction

Implement caching using Spring's built-in cache abstraction:

@Cacheable(value = "users", key = "#id")
public User getUserById(Long id) {
    return userRepository.findById(id).orElse(null);
}

Redis Caching

For distributed caching, use Redis:

@Configuration
@EnableCaching
public class CacheConfig {
    @Bean
    public RedisCacheManager cacheManager(RedisConnectionFactory connectionFactory) {
        return RedisCacheManager.builder(connectionFactory).build();
    }
}

3. Application Configuration

Disable Auto-Configuration

Exclude unnecessary auto-configuration classes:

@SpringBootApplication(exclude = {
    DataSourceAutoConfiguration.class,
    JpaRepositoriesAutoConfiguration.class
})

Optimize Jackson Serialization

Customize Jackson configuration:

@Configuration
public class JacksonConfig {
    @Bean
    public ObjectMapper objectMapper() {
        ObjectMapper mapper = new ObjectMapper();
        mapper.configure(SerializationFeature.WRITE_DATES_AS_TIMESTAMPS, false);
        mapper.setSerializationInclusion(JsonInclude.Include.NON_NULL);
        return mapper;
    }
}

4. Monitoring and Profiling

Spring Boot Actuator

Add Actuator for monitoring:

management.endpoints.web.exposure.include=*
management.endpoint.metrics.enabled=true
management.endpoint.health.show-details=always

Performance Profiling

Use Micrometer for metrics collection:

@Configuration
public class MetricsConfig {
    @Bean
    public MeterRegistryCustomizer metricsCommonTags() {
        return registry -> registry.config()
            .commonTags("application", "spring-boot-app");
    }
}

5. Best Practices

  • Use @Async for long-running tasks
  • Implement proper error handling with @ControllerAdvice
  • Use @Valid and @Validated for input validation
  • Implement proper logging levels
  • Use @Transactional only when needed

Conclusion

Optimizing Spring Boot applications requires a combination of proper configuration, caching strategies, database optimization, and performance monitoring. By implementing these techniques, you can significantly improve your application's performance and scalability.